
International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 1

International Text Layout & Typography:
The Big And Future Picture
by Edward H. Trager

 ©2006 by Edward H. Trager & released under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License

Introduction

The purpose of this presentation is to provide a comprehensive review of aspects of international
text layout and typography which software engineers, font developers, linguists, translators and
other interested stakeholders in the Free/Libre Open Source (FLOSS) community should bear in mind
as we engineer the people’s operating systems of the future. The author believes that the efforts of
diverse groups must become unified around designing a unified text layout and rendering pipeline
for such systems.

Directionality and Block Progression

Before we begin writing text, we need to consider the direction (also called inline progression) and
block progression of that text. In the text model of the World Wide Web Consortium (W3C) standard
for Cascading Style Sheets version 2 (CSS2), the direction property of horizontal lines of text is defined
as either left-to-right, or right-to-left. Of course the problem with the CSS2 model (and existing user
agents) is that vertical scripts are left out in the cold.

The text model for CSS3 finally addresses the fact that a large number of people in the world like
to write and read their text in vertical columns. At the 27th International Unicode Conference, Elika
J. Etemad presented a paper entitled Robust Vertical Text Layout1 in which she outlined extensions to
the CSS text model which provide a straightforward and comprehensive solution for typesetting
scripts within the context of -- and without breaking -- the existing Unicode bidirectional algorithm
(BIDI) and CSS layout models.

Readers are encouraged to read Etemad’s paper as I will provide only a brief summary here with a
few examples to illustrate some of the layout possibilities that one
encounters in the real world. Note that I am describing a model -- not
CSS3 itself -- as the model is applicable beyond CSS3-compliant user
agents.

First, the inline-progression property has a total of four values:

 left-to-right (ltr) --e.g. Latin text
 right-to-left (rtl) --e.g. Arabic text
 top-to-bottom (ttb) --e.g. Traditional Chinese & Japanese text
 bottom-to-top (btt) --e.g. Runic text

Secondly, the block-progression property which describes how lines of
text are stacked next to one another, has three values:

 top-to-bottom (ttb) -- e.g., Latin text
 right-to-left (rtl) -- e.g., Traditional Chinese & Japanese text
 left-to-right (ltr) -- e.g., Traditional Mongolian text

Figure 1.Modern Japanese is often
typeset from top to bottom in
vertical columns which progress
from right to left.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 2

Scripts are generally constrained to a subset of the possible combination of values for these two
properties. For example, Latin, Greek, and Cyrillic are normally written with inline-progression=left-to-
right and block-progression=top-to-bottom. The combination of the two properties is called the writing-
mode. Some scripts are more flexible than others. For example, nowadays Chinese and Japanese
often are written with the same writing mode as Latin, Greek, and Cyrillic. However, Chinese and
Japanese are also often written with inline-progression=top-to-bottom and block-progression=right-to-left
(ttb-ltr, figure 1).

While text layout engines should support all of the normal writing modes that a script may
assume, unusual cases can and do occur in real life with surprising frequency, especially when
addressing the special needs of laying out multilingual text in dictionaries, charts, tables, and so on.
Text layout engines therefore need to be designed to support all of the possibilities. Let’s take a look
at a few examples below.

In figure 2 an excerpt from a Mongolian-
Japanese dictionary is shown. Traditional
Mongolian is set vertically with block
progression from left to right. However because
of the Japanese definitions, this dictionary is set
with block progression going from right to left
instead -- normal for Japanese but atypical for
Mongolian. Notice that the Latin phonetics and
Tibetan script are rotated 90 degrees clockwise
to accommodate the top-to-bottom text
progression.

One more example should suffice to show the
variability that can occur in the real world. In
figure 3 an excerpt from a Uyghur-Chinese-Russian dictionary is shown. The Uyghur is written in
Arabic script and typeset from right-to-left. Block progression is from top-to-bottom. Interestingly,
the Chinese definitions are also set horizontally from right-to-left. Chinese can be typeset from right
to left, and in fact it isn’t that unusual to see titles in Chinese set from right to left (as shown in figure
5). However, it is a bit unusual to see multiple lines of Chinese set horizontally from right to left in a
block or paragraph of text with top-to-bottom progression. Nevertheless, in this case it is seen to
work quite well.

Figure 2. A Mongolian-Japanese dictionary typeset vertically with
block progression from right to left.

Figure 3. Uyghur-Chinese-Russian dictionary has Arabic and Chinese script
both typeset from right-to-left.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 3

Text Directionality in Titles

Titles on book spines may be set using inline directionality that differs from
the norm used to set paragraphs of text. There is usually not just one right
answer, and as a result different cultures have arrived at different accepted
norms. For example, the French often rotate text 90 degrees counter clockwise
resulting in a bottom-to-top progression, while Americans and Thais prefer a
clockwise rotation resulting in top-to-bottom progression. Chinese can just be
typeset vertically from top-to-bottom (figure 4).

We don’t normally think of Chinese as a right-to-left script,
but in Taiwan and Hong Kong it is not uncommon to layout
the title of an article or book horizontally from right-to-left --
but this is only done when the body of the text is set
vertically with right-to-left block progression. In this way the
inline progression of the title matches the block progression
of the text (figure 5).

However the Japanese don’t use this convention. The
Japanese print plenty of books with vertical text and right-to-
left block progression, but the titles and headers, if set
horizontally, have left-to-right inline progression. The
Japanese preference may be due to the presence of the
hiragana and katakana syllabaries in their script. Chinese,

having only hanzi (漢 字 , kanji) is less directionally
constrained.

Right-to-left horizontal titles and headers seem to have
almost disappeared in mainland China now that horizontal left-to-right text

layouts are used almost exclusively in books and other publications.

As numerous and even unexpected combinations of inline and block progression values occur in
the real world, a well-designed text layout engine should make it easy for the user to layout text in
all of the ways we have seen ... and more (as discussed below).

Mirror Writing

Latin, Greek, and Cyrillic are not normally typeset from
right-to-left. However, every edition of Lewis Carroll’s
children’s classic Through the Looking Glass has required that the
first stanza of the poem, The Jabberwocky be printed as if
viewed in a mirror (figure 6).

I would therefore argue that a well-designed text layout
engine should automatically interpret a right-to-left directive
on a horizontal layout of Latin and similar left-to-right scripts as
a request to produce a mirrored image of a left-to-right layout.
The request will be used sparingly, to be sure, but is not
difficult to implement.

Figure 4. Titles on
book spines are set
using inline
progression that may
differ from the norm
for paragraphs of text.
As there is not just one
right answer, different
cultures have settled
on different
conventions.

Figure 5. Title page of a
Chinese dictionary
from Taiwan. The title
page is set from right-
to-left matching the
block progression of
the vertically-set
contents.

Figure 6. The opening stanza of the
Jabberwocky from Lewis Carroll’s Through the
Looking Glass set in mirrored type.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 4

And, just to be pedantically complete, let’s not forget about
editions of Lewis Carroll’s classic in languages that are written
from right to left:

In Alizah be-erets ha-mar'ah : va-asher mats'ah sham published in
Tel Aviv in 1979, the first stanza of The Jabberwocky is indeed
set from left to right (figure 7). But, unfortunately, the letters
themselves are not mirrored as they should be. Any intelligent
third-grader can see that this is wrong! All the more reason for
the FLOSS community to get it right ...

Bustrophedon

Bustrophedon can be considered a special case which,
however, could be produced trivially by a layout engine that
supported mirrored text: a calling application would merely
have to alter the inline progression from ltr to rtl on a line-by-
line basis when laying out a paragraph of text.

But, of course, you say, no one today uses bustrophedon. It’s
been out of vogue for the last 3000 years! Well, dear reader, you
have never been wrong before, but this time you are wrong.
Apparently fashions come and go, and sometimes they come

back again. So it is interesting to note that a GPL’ed bustrophedon text reader already exists.2 And
you can even embed it in mutt to read all your email bustrophedonically.
Perhaps this provides sufficient justification to support bustrophedonic
progression in the next generation FLOSS text layout engine ...

Supporting Mongolian

FLOSS systems do not yet support Mongolian. There are a number of problems.
Traditional Mongolian is written in vertical columns from top-to-bottom with left-
to-right block progression. So the first problem is that FLOSS systems do not yet
support vertical text. Fortunately, on this front the situation is changing rapidly.
Maciej Katafiasz (Mathrick) recently implemented vertical text layout for
Japanese (Figure 8).3 This is a very important achievement. Adding support for
left-to-right block progression, if not already available, should prove trivial.

The second problem is that FLOSS text layout engines do not yet support
shaping of Mongolian text. Fixing this will require working with knowledgeable
speakers of Mongolian who understand the shaping rules.

A third problem is that existing Mongolian fonts are designed with the
limitations of horizontal text layout in mind and therefore have glyphs rotated
90° counter-clockwise (Figure 9). Fonts with rotated glyphs are the wrong
answer. The right answer is to fix the technology so that fonts with rotated
glyphs become unnecessary.

Figure 8. Vertical
Japanese text rendered
by Pango. With
Japanese & Chinese
vertical text now
supported, Mongolian
should be the next
target.

Figure 7. In a Hebrew edition of Through the
Looking Glass, the first stanza of the
Jabberwocky is indeed set from left-to-right,
but the letters are not mirrored correctly,
undoubtedly increasing Alizah’s confusion ...

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 5

As Pango now supports vertical text layout, the FLOSS
community should now seize the opportunity to implement
proper support for traditional Mongolian script. The process
should begin by encouraging font developers like Vincent
Magiya, the developer of the free ManchuFont2005 OpenType
font4, to create an unrotated Mongolian font that could be
used to develop and test Mongolian support in Pango and the
FLOSS layout engine of the future. Perhaps it will be possible
to create a script to assist in “unrotating” glyphs from
existing fonts and converting horizontal advance metrics to
their vertical equivalents as a way to speed up the conversion
process.

We can easily envision how a little collaboration among the relevant stakeholders could quickly
yield support for Mongolian in Linux and related FLOSS systems. This would be another big win for
the Open Source development model and the community of FLOSS users.

Providing Access to Advanced Typographical Features

Laying out text for many scripts requires access to advanced typographical features such as glyph
substitution and precise glyph positioning. Baseline adjustments are commonly required on a per-
script basis when laying out text consisting of a mixture of scripts — a phenomenon that is
increasingly common in the modern world. Vertical font metrics are essential for traditional
Japanese, Chinese, and Mongolian typography. And graphic designers will tell you that access to
stylistic alternates, optional ligatures, swash forms, and other glyph variants is absolutely essential
even for “simple” scripts like Latin.

And it doesn’t stop there. Ligated forms in scripts like Devanagari or Arabic may be composed of
two, three, or even more individual characters. In many usage scenarios, users should be able to
highlight and edit the individual components of ligatures in a natural way within text composition
software. For example, a user should be able to highlight and change just a hamza or a shadda over a
letter or ligature form in Arabic without having to obliterate and then re-type the entire cluster of
letters comprising that ligature all over again. Unfortunately, highlighting and cursor positioning in
programs like OpenOffice.org was designed only with western scripts —not eastern scripts— in mind.
It is often very difficult to tell on which part of a ligature the cursor is actually positioned because
the required visual feedback is simply not there. As a result, it is often just simpler and faster to
erase and retype a whole word rather than try to get the cursor positioned in exactly the right spot
to fix a single mistyped character. Smart cursor and highlighting behavior as I envision it should
work is not yet available in any software I am aware of.

In order to provide advanced features such as those described above, two technologies are
available for exploitation by the Open Source developer community: OpenType and Graphite.

The OpenType5 font technology was developed by Microsoft and Adobe and is the most popular
technology. In the commercial world, tens of thousands of fonts are now available with OpenType
features. Additionally, OpenType will soon become an ISO standard6. Full-featured support for
OpenType should be seen as a key goal by the FLOSS development community. The Open Source
HarfBuzz library, now being maintained and developed by Behdad Esfahbod, is one library that
provides access to OpenType font features. The library originated in the FreeType project, was later
developed separately in Pango and QT, and now is being merged back into a common repository

Figure 9. Vincent Magiya’s free ManchuFont2005
OpenType font, like other existing Mongolian
fonts, has glyphs rotated 90 counterclockwise.
This is not the right model for FLOSS systems to
follow.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 6

which will be used by both Pango and QT.

Advancing FLOSS Typography with Graphite

Graphite is a very exciting Open Source smart font technology from SIL with a well-designed
application interface (API) and capabilities to handle the complexities of all known modern writing
systems7. Due to recent work by Daniel Glassey and others, Graphite support is now integrated into
Pango and into GTK widgets. Although now available in GTK, certain advanced features of Graphite,
such as split insertion bars, discontinguous range highlighting, and the manipulation of ligature
components, are not yet available in GTK. Nevertheless, the integration of the very capable Graphite
into the very popular Pango/GTK libraries is an exciting development. Daniel Glassey reports from
Akademy (September, 2006) that the QT developers are also interested in integrating Graphite. Let’s
take a brief look at some of Graphite’s impressive capabilities.

First, Graphite permits the full range of character-to-glyph
mappings: one-to-one, many-to-one, one-to-many, and many-to-
many. And in all these cases, Graphite keeps track of the mappings in
both directions, from character to glyph, and from glyph back to
character.

Unlike “dumb” fonts, glyphs rendered by Graphite can have their
positions adjusted both vertically and horizontally. This is needed,
for example, when creating a stack of diacritical marks above or
below a base character. Graphite can also modify the advance width
of a glyph. In Graphite, a base glyph can have multiple attachment
points for diacritics, and the diacritics themselves can form chains of
attachments. Base glyphs with attached diacritics can form clusters
and additional glyphs can then be positioned relative to whole
clusters (Figure 10).

In Graphite, ligatures are not simply substituted monolithic
glyphs. Instead a ligature in Graphite comprises both the visually
rendered ligated glyph as well as the underlying characters used to
create the ligature. It is possible to define rectangular areas of a
ligated glyph that correspond to the underlying characters. This
makes it possible to select the individual characters in a ligature for
the purpose of highlighting or editing within an application.
Because the highlighting and mouse selection routines are handled
by the Graphite interface, no complex programming is required by
the calling application (Figure 11).

Graphite’s advanced and flexible feature set and well-designed
API clearly have an important role to play in any and all discussions around advancing text
rendering in future FLOSS systems. Software developers interested in advanced typography need to
take a look at Graphite to see what they’ve been missing. Font developers should likewise do the
same to see how fonts can benefit from Graphite technology.

Seamlessly Integrating OpenType and Graphite Technologies

The sheer popularity of OpenType provides FLOSS developers with a mandate to support this

Figure 11. Rectangular areas represent
the component characters within a
ligature in Graphite. These can be
highlighted or selected within a calling
application without complex additional
coding.

Figure 10. In Graphite diacritics can
be bound to base glyphs at multiple
attachment points to form glyph
clusters. Additional glyphs, such as
the diaeresis shown, can then be
positioned relative to glyph clusters.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 7

technology. At the same time, the advanced feature set of Graphite has already attracted wide
interest in both the GTK+ and QT developer communities. This virtually guarantees that Graphite
will become an integral part of the FLOSS text rendering pipeline alongside OpenType. These two
technologies do not have identical APIs or feature sets. It is therefore imperative that the FLOSS
developer community reviews both technologies comprehensively before sitting down at the
drawing board to provide users with an integrated set of text layout services that expose the best
features of both technologies in a seamless and natural manner.

Word Breaking & Syllabification

The following modern languages commonly do not use spaces or other markers between words
when written in their native scripts:

 Thai
 Lao
 Khmer (Cambodian)
 Myanmar (Burmese)

In addition to these, a number of related minority, liturgical, and historical scripts of Southeast
Asia also do not use spaces between words when used to write native languages or the Pali language
of the Buddhist Canon. For example:

 Lanna (Unicode proposal exists)
 Tai Dam (Viet Tai, Unicode proposal exists)
 Tai Le (Dehong Dai, now in Unicode)
 New Tai Le (now in Unicode)

Since there are no spaces or other markers of word endings, word breaking requires a knowledge
of the vocabulary and grammar of the written language. Developing word- or syllable-segmentation
algorithms for these languages can be non-trivial and requires a in-depth knowledge of the specific
language that one wants to analyze.

Vuthichai Ampornaramveth (Khun Hui) wrote the Thai “text-cutting” program cttex used as the
basis of libThai which Qt and Pango use for Thai word boundary analysis. The basic principle is to
choose the result of a word-breaking operation that yields 1) the longest matching words and also 2)

the smallest word counts.8 As a simple example, consider the Thai phrase, “ ทำการบ้าน” which has

three components, “ทำ” (/tham/, to do something), “การ” (/kaːn/, the doing of something, often used a

prefix), and “บ้าน” (/baːn/, home, house). The phrase could be cut as either:

1) ทำ การ บ้าน (3 words, no errors) -- or-- 2) ทำ การบ้าน (2 words, no errors)

... but option #2, “do homework” results in the longest matching words and smallest word count and
this is the right answer. Khun Hui provides additional details and examples in his blog (in Thai).

In a localized sense, libThai solves the word boundary analysis problem for Thai. But, as Theppitak
Karoonboonyanan told me, “To share the code of (the cttex) word break module with other scripts, I’m not

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 8

sure if the underlying mechanism is ready for that.”9 Cttex operates on TIS-620 text and therefore is not a
candidate for extension or modification, even for the very closely-related languages like Northern
Thai (Lanna) or Lao.

Jens Herden of Khmeros.info, also using a dictionary-based approach, has written software to solve
the problem for Khmer.10 Although researchers are actively working on word boundary analysis for
languages like Myanmar11, 12 and Lao13, to the best of my knowledge the results of such research have
not yet become practical software available in Linux distributions.

What the FLOSS community needs is a lightweight but powerful object-oriented framework for
word boundary analysis that could be plugged into a unified text layout and rendering pipeline. We
can imagine having a virtual base class from which two sub-classes would be immediately derived:
one for dictionary-based segmentation (needed for Thai, Khmer, Lanna), and another for rule-based
segmentation (Lao). These could be further sub-classed as necessary.

IBM’s International Components for Unicode (ICU) library implements a word break iterator that
includes code for Thai.14 Word break iterators for other Southeast Asian languages do not yet exist in
ICU. Perhaps ICU’s class structure will be useful when thinking about how to design a unified text
layout and rendering pipeline that includes robust word-boundary analysis for all of the scripts
mentioned above and more.

SIL’s Graphite API currently provides classes for rule-based but not yet for dictionary-based word
and syllable segmentation. Perhaps extensions to Graphite’s API could include dictionary-based
word segmentation at some point in the future.

With the right foundation, creating a fast, lightweight, and extensible library for word boundary
analysis to handle the scripts of Southeast Asia is possible. However, only the coordinated efforts of
knowledgeable people in the world-wide FLOSS developer community can make the possibility
become a reality.

Segmentation of Pali Texts -- Esoteric or A Natural Outcome of Good Foundational Designs?

Before leaving the subject of word segmentation, I’ll mention an “esoteric” idea. Pali, the
principle language of the Theravadan Buddhist Canon, has historically been, and continues to be,
written in the numerous scripts of Southeast Asia.

When written in any of the scripts of Southeast Asia that do not place spaces between words, one
can certainly envision how the fixed or nearly-fixed spelling used in the texts could be mapped from
a source script into another script used for the dictionary-based lookup needed to perform word
segmentation. In other words, it might be possible to write a single Pali word segmentation
algorithm that would work equally well for Pali texts written in Thai, Khmer, Myanmar, Lanna and
other scripts.

Extensive computerized dictionaries for Pali, such as the Pali Text Society’s dictionary15, already
exist. If there also existed a well-designed Open Source class library for handling dictionary-based
word segmentation and related tasks such as spell checking for Southeast Asian scripts, Pali scholars
with a bent for software design might find the possibilities quite intriguing.

While the Pali example here might sound esoteric, the idea of creating well-designed foundational
infrastructure which can serve as the basis for many avenues of unforseen and creative exploration
in FLOSS systems is most certainly not esoteric. It’s just good design practice.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 9

Hyphenation

A problem closely related to the problem of word breaking for Southeast Asian typography is the
problem of hyphenation in Western typography. John D. Berry, a typographer who has been writing
about type for the past 15 years, points out that hyphenation is a big subject16. First of all, the
algorithms used in major commercial programs like PageMaker and QuarkXPress are sufficiently
imperfect that some manual line breaking is almost always employed by professional typographers.
Secondly, Berry points out that hyphenation rules for English differ between the Americans and the
British —including within their respective spheres of linguistic influence.

One library for hyphenation in the FLOSS world is Raph Levien’s libhnj17. According to Peter
Moulder18, several different programs —for example Scribus and OpenOffice.org— have independently
modified libhnj and have even used incompatible hyphenation dictionaries. The forking originally
occurred due to libhnj’s inadequate support for Unicode. Moulder thinks it would nice if these could
be unified, especially if the code could share dictionaries with TEX again (a task that may be difficult
due to the embedding of various TEX commands and macros in the TEX dictionaries). If FLOSS
systems are to achieve a degree of consistent behavior across different software applications, it
certainly would make sense to provide hyphenation as a shared system service.

Fonts are the First Step in Making Advanced Typography Both Possible And Convenient

It is fair to say that we are currently witnessing just the beginning of a new trend to produce high-
quality free/libre fonts with advanced typographical features made possible by technologies like
Graphite and OpenType.

For many scripts, much work remains before it will be actually convenient to produce high-quality
typography on FLOSS systems. For other scripts, much work remains before it will even be possible to
produce high-quality typography.

Let’s use Arabic as an example where it is possible but not yet convenient to produce high-quality
typography. A quick survey of statistics from Ethnolgue19, SIL20, and Wikipedia21 suggest that there
are at least 266 million people who use Arabic as the primary script for writing their language
(Arabic, Farsi, Urdu, Uyghur, etc.). Based on the high rates of population growth in the Middle East
alone, this estimate could be off by 100 million22. There should be no question that this is an
important market segment deserving serious attention by the FLOSS community. Software packages
like ArabTEX23 are capable of advanced layout of Arabic, including specifying ligatures, presenting
fully vocalized text, and precision glyph positioning. However TEX is probably not what most not-
technical users would call convenient.

All usable Arabic fonts require OpenType or
Graphite tables in order to typeset contextual
glyph forms correctly. The vast majority of the
free/libre Arabic fonts available today do not
have glyphs for the common ligatures like

initial ت /tāʼ/ or ي /yāʼ/ followed by م /mīm/

(figure 12), or medial ي /yāʼ/ followed by final ن
/nūn/ or ر /rāʼ/. Sometimes this lack of
ligature forms is intentional, as the forms are perhaps deemed unnecessary in modern font styles.

Figure 12.Technologies such as OpenType and Graphite provide
numerous opportunities for developers to create fonts that result in
higher quality typography.

http://en.wikipedia.org/wiki/M?m

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 10

However, another view holds that using such fonts is essentially no better than typing Arabic on
an old mechanical typewriter. The computer as a tool should open up new avenues for beautiful and
creative typography rather than simply reinforce the limitations of the technology of the previous
era. While the availability of optional ligated forms in Arabic fonts is no guarantee of better Arabic
typography, it is a first step in the right direction.

Another problem with a great many of the currently-available Free Arabic fonts is that fully
vocalized text is not supported correctly in popular programs such as OpenOffice.org. It is not clear
to me whether the origin of this problem is in the fonts, in the applications, or somewhere at the
crossroads of interaction between the fonts and the applications.

As Arabic fonts with extensive ligature sets and correct diacritic placement require more work to
produce, it is not surprising that few are available under free/libre licenses. The Uyghur Computer
Science Association24 is the only organization I am aware of which is providing freely downloadable
Arabic fonts with extended ligature sets. This situation will undoubtedly change in the future. It will
have to change if we want to make FLOSS operating systems more appealing to a wider audience of
Arabic script users.

Issues with quality font availability are by no means confined to the Middle East. We could just as

easily talk about problems with CJK fonts for East Asia. For example, a Hei style (黑體) font to serve
as the default sans font for Chinese doesn’t even exist yet, and some consider the freely-available
Japanese fonts inadequate for Japanese.

Preparing for New Scripts in Unicode

At the 21st International Unicode Conference in Dublin, Ireland in 2002, Michael Everson
presented a paper entitled Leaks in the Unicode Pipeline: script, script, script...25 In his paper, Everson
noted that although there were —at that time— 52 scripts allocated in the Unicode Standard, at least
another 96 remained to be encoded! Of the 96 noted by Everson, a whopping 33 (one-third)
represent scripts that continue to be used to write modern spoken languages or continue to be used
for liturgical purposes. The rest are historical scripts which remain important for scholarship and
study.

Since 2002, a some of the scripts mentioned by Everson, such as Tifinagh and N'Ko have now
become incorporated into the Standard. A review of Deborah Anderson’s Scripts Encoding Initiative
web site at University of California at Berkeley26 shows that of the now over 100 scripts listed, just 21
--one-fifth of the total-- have so far been approved for inclusion. Of those not yet approved,
proposals have not yet been written for a good portion. And of those scripts for which proposals do
exist, the quality of the proposals varies (excepting the high-quality proposals written by Everson
who is an old hand at it by now). We can conclude that the Unicode “script incorporation rate” is
slow, as a large amount of work and research is usually necessary before a script can be added to the
Standard.

Of course many of these unencoded scripts are related to other scripts already encoded in the
standard. Some are simple left-to-right alphabets and syllabaries without special features, and we
can conclude that it will not be difficult to produce fonts for the simpler scripts once encoded.

However a number of the other scripts have special features. Some have unique features not
shared by other scripts, while others are quite similar to other scripts already encoded in the
Standard.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 11

As an example of this latter category, let’s take a brief look at the traditional script of Northern
Thailand called Lanna. Lanna exhibits features typical of Indic scripts, such as having vowels that
may precede, sit on top, or hang below base consonants. However, unlike central Thai but akin to
scripts of South India like Kannada, Lanna
also has consonant glyph forms that hang
below (phonetically) preceding consonants.
For example, looking at figure 13, we can see
that the second letter พ /p/ in the Pali
word “nippan” (meaning nirvana) hangs
below the preceding พ /p/. In addition to
that, the example above shows that these
hanging consonantal forms usually have
completely different shapes from the
normal forms -- compare the word nippan in
the middle with the form on the right in the
first row where you can see how the พ /p/

is written as N in the subjoined form.

Also observe that these subjoined
consonant forms don’t always hang directly
beneath the preceding consonant. In the
second row, the first letter ม /m/ in the

word “thamma” (dharma) appears to be hanging in between the initial ธ/th/ and the second ม /m/.

Finally, in the third row in the word “prayaa” we see that the letter /r/ precedes the letter พ /p/.

The central Thai script doesn’t have anything like these features, although other modern Indic
scripts do have similar features. Whereas modern Thai fonts do not require special Graphite or
OpenType features, it should be evident that making good Lanna fonts will probably require a bit of
work and a very good understanding of the orthography of the script in addition to an
understanding of Graphite or OpenType.

The Lanna script was recently considered for inclusion in Unicode at the JTC1/SC2/WG2 - ISO/IEC
10646 - UCS meeting in Tokyo in September, so it might not be long before this script becomes
available in FLOSS systems.

Font Configuration and Customization in FLOSS Systems

Recent Freedesktop.org-sponsored IRC meetings27 have highlighted a number of issues related to
font configuration and customization on FLOSS systems.

At first glance, it would appear that all that is needed is to come up with a list of high-quality
FLOSS fonts for the major scripts in Unicode, and create a master Fontconfig fonts.conf file to serve as
the One Ring to rule and bind them all. Alas, the reality is perhaps not so simple as that. Careful
inspection reveals that there are subtle issues because different cultures can have very specific
cultural preferences -- even when those cultures share a common script.

As a first example, let’s use Modern Vietnamese which now shares with much of the Western
world the use of the Latin script for writing the national language, Quốc Ngữ.

Figure 13.The Lanna script exhibits many features typical of Indic
scripts. This traditional script of Northern Thailand is much more
complicated to write —or typeset— than the central Thai script.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 12

Vietnamese orthography differs from that used by many Western languages in having more
diacritical marks, especially on the vowel letters. As diacritical marks take up additional space,
designed-for-Vietnamese fonts tend
to have greater vertical line spacing
than similar fonts designed for use in
the West. This helps alleviate any
appearance of “crowding” caused by
the plethora of diacritics. In figure 14
we can see that the VU Pho Tho sans-
serif font has a much greater default
line spacing compared to DejaVu Sans
and this leads to an airier appearance.

Seeing the small diacritical marks
of Vietnamese on a computer display
can be difficult unless the font’s
diacritical marks are large enough.
This may require a larger default font size, or careful hinting of the diacritical marks, or both. While
the display of diacritical marks in DejaVu Sans is quite readable, Vietnamese users of FLOSS systems
may find that the default line spacing in DejaVu is too small. As a default font, DejaVu may prove to
be a sub-optimal choice for the Vietnamese market, and VU Pho Tho may be preferred.

The Vietnamese example above is perhaps not a familiar one among Western developers. A
better-known example involves Chinese and Japanese. Although it seems that the actual differences
in the designs of glyphs between Chinese and Japanese fonts are really quite small, they are
apparently large enough to create acrimony among Chinese and Japanese users forced to use each
other’s fonts. Japanese users want to have Japanese fonts. And Chinese users want to have Chinese
fonts.

Examples of two characters which are said to
typically differ in glyph form between Chinese and

Japanese fonts are 直 (Chinese zhí ㄓˊ : straight,

vertical) and 骨 (Chinese gú ㄍㄨˊ : bone), shown in

figure 15. The Japanese tend to only accept the “直 ”

form as being correct whereas both “ 直 ” and “直 ”
forms appear in Chinese fonts. A similar situation holds

for “骨” where the little hook in the box on the top can
go to either the left or right in Chinese fonts, but only to
the right in Japanese fonts. As my father used to say, de
gustibus non disputandem est28.

With the two previous examples now in mind, it should be evident that the following snippet of a
fonts.conf file from the Fedora Core 6 development branch is just not the answer, is it? :

Figure 14. Waterfall presentations of DejaVu Sans and VU Pho Tho. While
DejaVu Sans has very readable diacritics, only the designed-for-Vietnamese font
Vu Pho Tho on the right has the larger line spacing that Vietnamese readers
expect.

Figure 15. Differences in the designs of Chinese (中) and

Japanese (日) glyphs are subtle ... but users still
complain.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 13

 <alias>
 <family>DejaVu Serif</family>
 <family>Bitstream Vera Serif</family>
 <family>Times New Roman</family>
 ...
 <family>Luxi Serif</family>
 <family>Kochi Mincho</family>
 <family>Sazanami Mincho</family>
 <family>AR PL ZenKai Uni</family>
 <family>AR PL SungtiL GB</family>
 <family>AR PL Mingti2L Big5</family>

 <family>ＭＳ 明朝</family>
 <family>Baekmuk Batang</family>
 <family>FreeSerif</family>
 <family>MgOpen Canonica</family>
 <default><family>serif</family></default>
 </alias>

In fact, this snippet of fonts.conf code is wrong for a lot of other reasons too. Can you see what
some of them are?

One solution would be to create different fonts.conf files for different locales. For example, a
fonts.conf.zh file would clearly place Chinese font families ahead of Japanese, while fonts.conf.ja would
do exactly the opposite. And a fonts.conf.el file for Grecian locales would certainly never place
MgOpen Canonica at the bottom of the list!

But that solution is, I’m afraid, not ideal. The problem is that many people in the world want --
and need-- to work in more than just one script or orthography. Some people might have a need to
commonly work in three or four or even more scripts or orthographies all in a day’s work. Take the
hypothetical example of a Chinese graphics designer who frequently does business for clients in
Japan: to be constrained by any system that always gave priority to Chinese fonts would be
ridiculous.

Configuring Fonts by Script and Orthography

Suppose for a moment that Fontconfig were expanded to recognize some new xml tags: <script>
and <orthography>. We could then write fonts.conf snippets like the following:

<script>

<name>latn</name>

<orthography>

<name>vn</name>

<alias>

<family>VU Pho Tho</family>

<family>DejaVu Sans</family>

<default><family>sans</family></default>

</alias>

</orthography>

</script>

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 14

This would would tell Fontconfig to prefer the VU Pho Tho font as the default sans font for any
Vietnamese text. Obviously this rule would be used at runtime for users with an environment set to
a Vietnamese locale. But --and this is perhaps the more interesting case-- the rule would also be
applied when a user --regardless of locale-- visited a sans-serif Vietnamese web page that had been
tagged with a lang or xml:lang tag for Vietnamese.

Although not shown in the short example above, it should be obvious that the <script> section for
latn could contain any number of nested <orthography> sections, including of course a default
orthography. The default orthography section for Latin would now look a lot cleaner than the
Fedora example we saw earlier, as now only Latin font families would be included.

Let’s see at what the situation would look like for Chinese Japanese users. A CJK snippet should
look something like the following (note that the ISO 15924 code29 for CJK ideographs comprising Hanzi,
Kanji, and Hanja is “hani”):

<script>

<name>hani</name>

<orthography>

<name>ja</name>

<alias>

<family>Sazanami Mincho</family>

<default><family>serif</family></default>

</alias>

</orthography>

<orthography>

<name>zh</name>

<alias>

<family>AR PL ShanHeiSun Uni</family>

<default><family>serif</family></default>

</alias>

</orthography>

</script>

... which says to prefer Sazanami Mincho as the default serif font for Japanese text, and to prefer AR
PL ShanHeiSun Uni as the default serif font for Chinese text. Any Chinese or Japanese user who didn’t
like that could change it -- preferably with a GUI tool.

Configuring fonts hierarchically by script and orthography as suggested above would be a boon
for other scripts such as Arabic too. For example, the preferred font style for Urdu speakers is quite
a bit different than that for some other languages written with the Arabic script. On top of this,
many languages, including Urdu, Farsi, and Uyghur, require additional characters that are not
present in all Arabic fonts. The model suggested here would allow very precise tuning of default
fonts for all scripts and orthographies and would thus eliminate many of the problems that people
are currently experiencing.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 15

Configuring Fonts for Screen and Print

The Fontconfig library currently defines sections for serif, sans, and monospace fonts. It is useful to
recognize that the terms serif and sans (being an abbreviation of sans-serif) are only really applicable
in Western typography. Non-Western script traditions do not have a native concept of “serifs.” It
would be more accurate in a global typographical context to replace the word serif with modulated,
and the word sans with unmodulated. Modulation refers to changes in the stroke width of an imaginary
pen used to draw a glyph. Serif fonts are thus a subset, and specifically the Western subset, of a larger
global set of all modulated fonts, while sans-serif fonts are the Western subset of a larger global set of
all visually unmodulated fonts. I am not sure whether such a change in the accepted terminology,
regardless of the inadequacy of the accepted terminology, will ever occur.

In any case, the dichotomous serif and sans categories represent only two of many legitimate ways
of categorizing fonts. Monospace is another legitimate category referring to a very narrow set of
Western fonts designed to behave like letters typed on a typewriter. Since these categories are only
three of many possible legitimate categories, it is worth asking what additional categories would be
the most useful to have available for defining default font sets?

The almost Herculean efforts by the Wen Quan Yi30 project to produce high-quality bitmap fonts
for Chinese at common screen-viewing sizes highlights the importance of fonts designed specifically
for viewing on computer displays. While the Wen Quan Yi project is tackling the problem for
Chinese, many other language community organizations around the world are working to provide
solutions for their own scripts. It therefore seems that creating a category in Fontconfig for screen
fonts would be judicious.

As a complement to the screen category, a print category is also advisable. Once again, Chinese
provides a good example of why. To read Chinese on screen without excessive blurriness at small
sizes —in web pages, for example— requires a bitmap font like Wen Quan Yi. However, such a bitmap
font is completely inadequate for printing. Substituting a sans font for printing —which in the case

of Chinese would be a Hei style (黑體) font— is also not ideal, as a Song style (宋體) font (such as AR
PL ShanHeiSun) is generally preferred for reading printed documents, just as westerners generally
prefer a Roman serif font for reading printed documents.

Blacklisting Glyphs

Since it is easier and less time-consuming to write short snippets of XML code in Fontconfig’s
fonts.conf file than it is to try to get certain fonts “fixed” upstream, the idea of providing a
mechanism to blacklist so-called “terminally ill glyphs” from within Fontconfig has been widely
discussed. I believe at least several different patches to fontconfig have been suggested and there is
now general agreement that some blacklisting mechanism will need to be incorporated into
Fontconfig. However, the exact nature and extent of that mechanism has not been agreed upon.

One of the issues has been the desire to be able to blacklist a block of glyphs for specific scripts.
For example, people want to be able to enforce rules such as “don’t use the Latin, Greek, or Cyrillic
glyphs from such-and-such a CJK font because they look awful.” Implementing hierarchical
categorization of default fonts by script and orthography in Fontconfig, as suggested above, will
eliminate much of the need for these kind of rules. Under such a scenario, blacklisting could be used
for the much more occasional occurrence of an otherwise “good” font having just one or two “bad
apples.” Problems such as having really awful Greek glyphs from a CJK font appearing as the default

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 16

choice for a passage of Greek text would simply not occur.

Enhancing Development Tools for Better Typography

Just as GCC is an indispensable tool for Free software, George Williams’ Fontforge has played an
important role in advancing FLOSS typography. Fontforge represents a revolution in type design
because it significantly lowers the barrier to entry for aspiring typographers worldwide. Yet, like
other tools, Fontforge can still be improved. Some would like to see Fontforge get a GTK+ facelift, but
I agree with Williams that this is not an interesting task as it fails to improve functionality in any
meaningful way. Let’s look at two much better ways to improve Fontforge:

First, I mentioned earlier that SIL’s Graphite technology has an important place in the future of
FLOSS typography. If Graphite development tools can be integrated into the well-known and
popular Fontforge, this could help spur development of Graphite-enabled FLOSS fonts.

The second improvement is that Fontforge needs to provide features that assist in the process of
distributed font development for projects like DejaVu and Wen Quan Yi. Let’s take the DejaVu
project as an example. Currently, the DejaVu development team is struggling with the fact that the
DejaVu sans development files are already greater than 2MB in size. Even if a developer only
changes a few glyphs, his or her colleagues are forced to receive a 2MB file update in order to sync
their local repositories. The problem is that a Fontforge sfd file is just a local file-based database.
What is needed instead is an option to save glyphs to a distributed network database instead. This
idea is not not new. Back in April, Raph Levien wrote on the OpenFontLibrary discussion list31:

I’m primarily thinking about network access to the font repository. This basically boils down to
which version control tool is chosen, and how it’s set up. Should each font be one big text file, or
perhaps a directory with a separate file for each glyph?

A simple but very effective solution would be to modify Fontforge to provide an option to save
fonts in a special extended-SVG/XML filesystem or directory-based database format. In place of
writing out a single file representing a font, Fontforge would, as Levien was thinking, write a file for
each glyph in an appropriate subdirectory:

...

DejaVu/sans/glyphs/g201c.svg

DejaVu/sans/glyphs/g201d.svg

DejaVu/sans/glyphs/g201e.svg

...

To my knowledge, the current SVG font format does not support features such as having one
glyph reference the outlines of other glyphs. Therefore the current SVG font format would have to
be extended with additional attributes and tags. However, once the details of the XML had been
worked out, one could then treat the font repository just like any other distributed source code
repository.

Another big advantage of such a solution would be that development teams would remain free to
choose whichever source code management (SCM) system they wanted, be it git, SVN, SVK, or
something else. The only enhancement required to Fontforge would be the addition of a new Save
format. Fontforge would remain agnostic about network and SCM protocols, just as it should. It
would now also become trivial to write Perl or Python scripts to perform custom management tasks
such as glyph subsetting, calculation of coverage statistics, and so on.

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 17

Wrap Up: Opportunities in the Development Pipeline

In this paper, I have attempted to cover some of the big issues related to text layout on FLOSS
systems. Hopefully I have succeeded to some degree, even though there are additional topics that I
have knowingly avoided discussing. In particular, I failed to mention tools designed to make the
lives of users easier. GUI-based font management and advanced font dialog issues are the topic of
another paper, and readers are encouraged to look at my discussion, Designing a Better Font Selection
Widget, as a starting point32. How text is actually typed into the computer has been almost
completely ignored, excepting the brief mention of smart cursor positioning within ligatures.
Although word breaking in Southeast Asian scripts was given some treatment, hyphenation in
Western typography was treated much more briefly. The related issues of justification and kerning
—in both Western and Eastern scripts— were not discussed at all. Satisfactory treatment of these
topics could easily fill another paper.

Despite these shortcomings, let’s wrap up by looking at the really big picture and asking a few
questions about the roles that each of us individually and collectively can play in the process.
Despite numerous imperfections, the Unicode Standard is an enormous success. But it would be a
mistake to think of Unicode as some sort of fait accompli toward which we can take a passive attitude.

Instead, I believe the FLOSS community has a duty and responsibility to take a much more active
stance in pushing the Standard forward to the next milestone. Collaboration with groups who were
historically outside of the traditional FLOSS development network, such as the Scripts Encoding
Initiative at UC Berkeley and SIL International, should prove particularly fruitful. Although the
Unicode script incorporation rate is slow, nevertheless the FLOSS community and collaborating
stakeholders should be ready to “move into high gear” every time a new script is added into Unicode
to insure that fonts and input methods become available on FLOSS systems in a timely manner.
Martin Hosken, the co-author with Michael Everson of the Lanna Unicode proposal, recently
remarked to me33:

A good target should be that an implementation of a script be available for every new script
appearing in a release of Unicode when the new version of Unicode is released. There is a long
lag time between scripts being accepted by Unicode and their appearing in a new version of
Unicode ... so there is time to test implementations and have something ready by the time the
real release occurs.

Hosken points out that SIL is now working on a tool dubbed Scriptforge which is designed to be a
clearing house of information about writing systems and their implementations. The FLOSS
community would do well to consider the possibilities here, not only for new scripts, but also for
many already encoded scripts where the level of support in FLOSS systems is still sorely lacking. For
example, recall that a Free Hei (sans) style font for Chinese is not available, and substituting an
available Japanese font to fill that gap is a very crass idea.

So, as food for thought, here are a few questions:

• How does a script progress from not even being encoded in Unicode at all to eventually becoming just
another script which we can use to compose text on a computer?

• How can the FLOSS community contribute to make this process better and faster?

• What does the overall development pipeline look like?

• Is the process supervised at some level within humanity, or does it all just happen autonomously?

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 18

• Where are the gaps and holes in the process?

• Where are the gaps and holes in support for existing scripts?

• What existing organizations and projects are most capable of filling in the gaps?

• Where are the opportunities for establishing or enhancing communication between existing
organisations and projects in order to streamline the process?

• Should more formal relationships be established between existing organizations in order to better track
the development processes and monitor quality assurance?

• What aspects are entirely missing from the existing implementation processes?

When we think about the current explosion of interest in FLOSS systems combined with new
initiatives like the One Laptop Per Child (OLPC)34 program, I think you’ll agree that these are
relevant questions to ask. And to answer.

Appendix

The following chart, although incomplete, is provided as a tool for readers interested in mulling
over questions such as those raised at the conclusion of the paper:

Who? What? Issues?
* SEI - Script Encoding Initiative,
UC Berkeley
* SIL
* Other Independent Proposal Writers

* Find funding to do initial research on
scripts
* Prepares proposals to submit to ISO/IEC
10646 / Unicode

* SEI is underfunded.
* Too many scripts to encode.
* Proposal quality varies.
* Many scripts still have no proposals.

* Unicode.org
* ISO/IEC 10646

* Approve script proposals.
* Publish Unicode standard.

* History shows that numerous headaches
occur at implementation time for scripts
that were approved without sufficient
research or input from stakeholders at the
time the proposals were submitted to
Unicode for approval.

Numerous developers and projects in the
FLOSS Community:

* Freedesktop.org
* X11.org
* Fontconfig
* FreeType
* Gnome (GTK, Pango, etc.)
* KDE (QT, etc.)
* DejaVu
* Wen Quan Yi
... etc. etc. etc. ...

* Develop the font and text layout
rendering infrastructure for the Free
Desktop.

* Of course there are none :-)

* Individual Font Developers
* Language Community NGOs
* Language Community Govt. Orgs. (GOs)

* Develop and release fonts
* Develop keyboard drivers and input
methods.

* Individual Font Developers, GOs and NGOs
in many parts of the world don’t have a clue
about FLOSS licensing, don’t understand

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 19

Who? What? Issues?
* FLOSS Community and LUGs
* SIL International

* SIL now releasing fonts under new OFL
license.

GPL, have never heard of OFL.
* Keyboard drivers and input method
development done piecemeal: no guarantee
of development for all major platforms
(FLOSS, Apple, Microsoft) even though
simultaneous development would save time
and work.

* Individual Font Developers ?
* Language Community NGOs ?
* Language Community Govt. Orgs.
(GOs) ?
* FLOSS Community and LUGs
* SIL International

* Comprehensively test fonts for
compatibility on FLOSS and other
platforms.

* Of course organizations like SIL and
projects like DejaVu and Wen Quan Yi do
test their fonts. But the testing record is
much spottier for other GOs, NGOs, LUGs,
Individual developers, etc.
* Lack of standardized test suites.

* SIL
* Unifont.org
* Other Font Websites ?

* Publicize FLOSS fonts and related
software so that language communities
know about it.

* How many people outside of the
development communities look at these
resources?

* SIL ?
* LUGs ?

* Provides workshops and educational
seminars in how to use FLOSS software,
fonts, input methods.

* Language Communities * Adopt and use FLOSS fonts and software
systems.

* Many language communities still don’t
know about FLOSS at all.

References

1. Etemad, Elika J. Robust Vertical Text Layout. 27th Internationalization and Unicode Conference,
Berlin, Germany, April 2005. http://www.unicode.org/notes/tn22/RobustVerticalLayout.pdf.
2. The Boustrophedon Text Reader. http://traevoli.com/boust/screen.php.
3. Katafiasz, Maciej (Mathrick). The End Is Near. http://mathrick.org/blog/archives/2006/08/21/the-end-is-
near/.
4. ManchuFont2005. http://sourceforge.net/project/showfiles.php?group_id=118623.
5. OpenType Specification. http://www.microsoft.com/typography/otspec/.
6. Wikipedia. OpenType. http://en.wikipedia.org/wiki/OpenType.
7. Correll, Sharon. Graphite Application Programmers Guide, Version 1.01. SIL Non-Roman script
Initiative (NRSI), July, 2006.
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&cat_id=RenderingGraphite

8. Ampornaramveth, Vuthichai (Khun Hui). การตัดคำของ cttex. Hui’s Blog, วันพฤหัสบด,ี กรกฎาคม 08,
2547 (July 08, 2004). http://vuthi.blogspot.com/2004/07/cttex.html.
9. Karoonboonyanan, Theppitak. Pers. comm., May, 2005.
10. Herden, Jens. KDE Cross Cultural - Experiences From The KDE Localization Process In Cambodia. Talk
given at KDE Akademy 2006. Dublin, Ireland, September, 2006.
http://conference2006.kde.org/conference/talks/5.php
11. Tun, Ngwe. Myanmar Localization Efforts and Issues. Myanmar Unicode and NLP Research Center,

International Text Layout & Typography : The Big And Future Picture Gnome Live, Boston, October 2006 – Text Layout Summit 20

2006. http://www.tcllab.org/events/uploads/ngwe-myanmar1.pdf .
12. Htay, Hla Hla & Kavi Narayana Murthy. Myanmar Word Segmentation. Thesis work by the author in
the Department of Computer Science, University of Hyderabad, India. hla_hla_htay@yahoo.co.uk.
13. Dalaloy, Valaxay. Lao Syllabification for Line Breaking. August, 2006.
http://www.tcllab.org/events/uploads/valaxay-lao.pdf
14. Text Element Boundary Analysis. ICU Users Guide.
http://icu.sourceforge.net/userguide/boundaryAnalysis.html.
15. The Pali Text Society. Pali-English Dictionary. http://dsal.uchicago.edu/dictionaries/pali/ .
16. Berry, John D. dot-font: The justification for Hyphenation.
http://www.creativepro.com/story/feature/8658.html.
17. Levien, Raph. Libhnj. http://www.levien.com/.
18. Moulder, Peter. Pers. comm., September, 2006.
19. Ethnologue Languages of the World. http://www.ethnologue.com/
20. Documentation for ISO 639 identifier: ara. SIL International.
http://www.sil.org/iso639-3/documentation.asp?id=ara.
21. List of Languages by Number of Native Speakers. Wikipedia article.
http://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers.
22. Population Resource Center. Executive Summary: The Middle East.
http://www.prcdc.org/summaries/middleeast/middleeast.html
23. ArabTEX. http://www.informatik.uni-stuttgart.de/ifi/bs/research/arab_e.html.
24. Uyghur Computer Science Association Fonts. http://www.ukij.org/fonts/.
25. Everson, Michael. 2002. Leaks in the Unicode pipeline: script, script, script... 21st International Unicode
Conference, Dublin, Ireland, May 2002. http://www.unicode.org/notes/tn4/everson-iuc21pap.pdf
26. Anderson, Deborah. Script Encoding Initiative web site at the Dept. of Linguistics, UC Berkeley.
http://www.linguistics.berkeley.edu/sei/who.html
27. Freedesktop.org. Font Configuration IRC Meeting Archives.
http://www.freedesktop.org/wiki/Software_2fFonts_2fConfiguration_2fArchives.
28. De gustibus non disputandem est: “There is no accounting for tastes.”
29. Unicode.org. ISO 15924 Codes, http://www.unicode.org/iso15924/iso15924-codes.html.

30. Wen Quan Yi (文泉驿). Wen Quan Yi Open source CJK font project.

http://wqy.sourceforge.net/cgi-bin/enindex.cgi.
31. Levien, Raph. Re: Free Design Software Community Roadmap.
http://lists.freedesktop.org/archives/openfontlibrary/2006-April/000060.html
32. Trager, Edward. Designing a Better Font Selection Widget. September, 2005.
http://unifont.org/fontdialog/.
33. Hosken, Martin. Pers. comm. September, 2006.
34. One Laptop Per Child. http://laptop.org/

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.

